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Abstract The transient short-hot-wire method for measuring thermal conductivity
and thermal diffusivity makes use of only one thermal-conductivity cell, and end
effects are taken into account by numerical simulation. A search algorithm based on
the Gauss–Newton nonlinear least-squares method is proposed to make the method
applicable to high-diffusivity (i.e., low-density) gases. The procedure is tested using
computer-generated data for hydrogen at atmospheric pressure and published experi-
mental data for low-density argon gas. Convergence is excellent even for cases where
the temperature rise versus the logarithm of time is far from linear. The determined
values for thermal conductivity from experimental data are in good agreement with
published values for argon, while the thermal diffusivity is about 10 % lower than
the reference data. For the computer-generated data, the search algorithm can return
both thermal conductivity and thermal diffusivity to within 0.02 % of the exact values.
A one-dimensional version of the method may be used for analysis of low-density gas
data produced by conventional transient hot-wire instruments.
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Nomenclature
ai, j Coefficient of algebraic equation for grid point (i, j)
bi, j Source term in discretized equation
c Specific heat capacity
H Height of sample container (length of wire)
N Number of radial or axial grid points or numerical time steps
P Pressure
q Heat supplied per unit time per unit length of wire
Q Heat per unit time per unit volume
r Radial coordinate
r0 Wire radius
ri j Numerical residual for algebraic equation (i, j)
R Radius of sample container
S Summation to be minimized
t Time
T Temperature
T ′ Calculated temperature where the thermal diffusivity has been perturbed

(or a required correction to the temperature in the Appendix)
T ′′ Calculated temperature where the thermal conductivity has been perturbed
x Coefficient to be determined in least-squares algorithm

Greek
α Thermal diffusivity
δα Small change in thermal diffusivity
δλ Small change in thermal conductivity
λ Thermal conductivity
ρ Density
ψi Difference between calculation and experiment for measurement i

Subscripts
0 Initial or boundary
calc Calculation
exp Experiment
r Radial direction
s Sample
t Related to time
w Wire
z Axial direction

1 Introduction

The transient hot-wire method is widely considered to be the most accurate technique
for thermal-conductivity measurements for both liquids and gases. It has a major
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advantage over many other methods in that the required data are collected before the
onset of effects of natural convection. Moreover, it is fast, it has a relatively simple
analytical working equation, and the technique is well established. However, a number
of corrections [1] are necessary to account for differences between the ideal model and
the actual instrument. Some of these can be reduced by good design. One important
requirement to obtain a linear relationship between the measured temperature rise
and the logarithm of time is that the radius of the sample holder, R, be enough for
the wire to behave as though it is in a semi-infinite medium. A useful criterion is
that the Fourier number αt/R2 be less than about 0.2 [1,2], where t is typically of
the order of 1 s or 2 s. This criterion can be met easily for liquids and high-density
gases, but for gases where the density is lower than about 0.5 mol · L−1 (typically
P < 1 MPa at 25 ◦C [2,3]), the effect of the outer boundary tends to become severe in
instruments of a practical size. For gases where the thermal conductivity is high such as
hydrogen and helium, this problem can occur at even higher pressures. Low-density gas
measurements are of fundamental importance for theoretical and practical correlation
of thermal conductivity. However, for transient hot-wire data, extrapolation to zero
density is often done from pressures greater than 1 MPa [2]. This is of some concern,
particularly for gases like hydrogen where practically all of the recommended primary
reference data has been collected by the transient hot-wire method [4]. Moreover, for
refrigerants below the critical pressure, sometimes it is not even possible to extrapolate
from high-density vapor data since the fluid becomes a liquid as the pressure is raised
[2]. These considerations have motivated a number of authors to propose schemes to
make the transient hot-wire method more applicable to measurements in low-density
gas [2,5,6].

Analytical corrections are available for the outer boundary effect [1], but the accu-
racy of the method diminishes as the linear section of the curve becomes shorter and
shorter [3]. An alternative is to use large cells for low-pressure work [2]. However, if
the same cell is to be employed for high-pressure gas, an unreasonably heavy pressure
vessel may be required. Another approach is to use a numerical method to solve the
heat conduction equation all the way to the boundary and thus automatically account
for the effect of the container wall [5]. Assael et al. [5] reported that for high-diffusivity
gas, a one-dimensional finite element solution of the heat conduction equation could
yield a more accurate estimation of thermal conductivity than simply following some
of the approximate corrections by Healy et al. [1]. The numerical approach appears
very promising since all departures from the ideal analytical model can be directly
incorporated in the numerical formulation.

Another complication with the conventional transient hot-wire method that can
increase the sample volume is related to how to treat the cooling effects near the
ends of the cell where the wire connects to the terminals. One of the most successful
methods is to use two wires of different lengths (e.g., [6,7]). A different approach is
to attach potential taps offset from the ends to measure the voltage across the central
region of the wire (e.g., [8]). In either case a long wire is required. About 10 years ago,
Fujii et al. [9–11] proposed an alternative method where the two-dimensional unsteady
heat conduction equation was solved simultaneously for the wire and sample fluid,
automatically accounting for the finite length of the wire. This method has some
important advantages over the conventional technique. First, only one cell is required
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and it is not necessary to use a long wire. Thus, the method is referred to as the
“transient short-hot-wire method.” The possibility of using a short wire is particularly
valuable for reducing the sample size and for measurement of properties of electrically
conductive and corrosive fluids where it is necessary to apply a protective coating to the
wire [10]. Moreover, the apparatus is simpler than the conventional hot-wire apparatus
and all departures from ideal one-dimensional heat conduction are included directly
in the numerical model. The main disadvantage with the short-hot-wire method is
that additional effort is required to ensure that numerical errors in the simulation
do not contribute significantly to the uncertainty in the final estimations of thermal
conductivity and thermal diffusivity. However, with the increase in speed and capacity
of digital computers, the calculation time required for high-resolution two-dimensional
(2D) numerical solutions is diminishing to a point where numerical approaches can
become competitive with and even superior to approximate analytical corrections.

In this study we demonstrate that the numerical approach used in the transient short-
hot-wire method is a valuable tool to automatically account for the finite tube diameter
in addition to the effect of the finite length of the wire. Moreover, we propose a search
algorithm to find the thermal conductivity and thermal diffusivity from experimental
data where the temperature/log(time) relationship is far from linear.

2 Physical Model

The domain of the model is illustrated in Fig. 1. For a wire of radius r0 in a cylinder of
radius R and height H with heat supplied at q power units per unit length, unsteady
heat conduction is given by

ρc
∂T

∂t
= 1

r

∂

∂r

(
rλ
∂T

∂r

)
+ ∂

∂z

(
λ
∂T

∂z

)
+ Q (1)

Q = q/πr2
0 (r ≤ r0)

= 0 (r > r0) (2)

T |r=R = T0 (3)

T |z=0 = T0 (4)

∂T

∂z
|z=H/2 = 0 (5)

T |t=0 = T0 (6)
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Fig. 1 Short-hot-wire model domain and boundary conditions

λ|r≤r0 = λw λ|r>r0=λs (7)

ρc|r≤r0 = ρwcw ρc|r>r0 = ρscs (8)

In Eq. 2, it is assumed that the power per unit volume is constant and independent
of the wire temperature. At the outer wall of the sample container and base of the
cylinder and wire, it is assumed that the temperature is fixed at the initial temperature
of the cell, as indicated in Eqs. 3 and 4. Symmetry is assumed for half of the domain
(Eq. 5). The properties of the gas and wire are assumed to not change with time or
temperature.

3 Numerical Solution

3.1 Discretization and Solution of Transient Thermal Field

Equation 1 is discretized using the finite volume method [12] with central differencing
for the conduction terms and a fully implicit formulation for the unsteady term. This
results in a sparse, linear, diagonally dominant set of equations to be solved. For
the present work, the line-by-line tri-diagonal matrix algorithm (TDMA) (see [12])
was used as a preconditioner for a generalized conjugate residuals (GCR) algorithm
[13,14]. This combination was found to result in a fast and well-converged solution
to the algebraic equations. Details are given in the Appendix.

3.2 Search Algorithm to Find Thermal Conductivity and Thermal Diffusivity

The basic approach used is to start with an initial guess for the properties, solve Eqs.
1–8, and then iteratively adjust the thermal diffusivity and thermal conductivity so that
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the solution matches the experimental data. This can be stated as a nonlinear least-
squares problem as in Eq. 9 where we need to find λ and α such that the objective
function, Snon−linear, is minimized;

Snon−linear =
Nexp∑
i=1

(
Texp i − Ti (λ, α)

)2 = min (9)

In Eq. 9, Nexp is the total number of experimental measurements, Texp i is the i th mea-
sured temperature, and Ti (λ,α) is the calculated hot-wire temperature from numerical
solution of Eqs. 1–8.

Equation 9 is solved using the Gauss–Newton algorithm for nonlinear least-squares
problems (e.g., [15]) with a numerical approximation to the Jacobian. It is worthwhile
to outline the method briefly. Let:

ψi (λ, α) ≡ Texp i − Ti (λ, α) (10)

Starting with initial guesses,λ0 andα0, and using the truncated Taylor series expansion,
ψi can be approximated as

ψi (λ, α) ≈ ψi (λ0, α0)+ (α − α0)
∂ψi

∂α
|0 + (λ− λ0)

∂ψi

∂λ
|0 (11)

The concept for the Gauss–Newton method is to substitute Eq. 11 into Eq. 9 and then
solve the resulting linear least-squares problem to obtain better estimates for α and
λ. Iteration ultimately yields the solution to Eq. 9 provided the algorithm converges.
For the present study, the gradients in Eq. 11 are approximated numerically by finite
differences using small changes in α and λ denoted by δα and δ λ, respectively. This
yields

ψi (λ, α) ≈ ψi (λ0, α0)+ (α − α0)

δα
(Ti (λ0, α0)− Ti (λ0, α0 + δα))

+ λ− λ0

δλ
(Ti (λ0, α0)− Ti (λ0 + δλ, α0)) (12)

For conciseness, let Ti = Ti (λ0, α0), T ′
i = Ti (λ0, α0 + δα), T ′′

i = Ti (λ0 + δλ, α0),
and substitute Eq. 12 into Eq. 9. This results in a linear least-squares problem given
by

Slinear =
N exp∑
i=1

((
Texp i − Ti

) − xα
(
T ′

i − Ti
) − xλ

(
T ′′

i − Ti
))2 = min (13)

The unknowns, xα and xλ, in Eq. 13 are defined in terms of the unknown α and λ as

xα = α − α0

δα
xλ = λ− λ0

δλ
(14)
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Thus, to solve Eq. 9, the following algorithm is employed:

1. Guess α and λ
2. Solve Eq. 1 to give the volume-averaged wire temperature: (Tj , tcalc j ) j = 1, Ncalc
3. Using the calculated result, interpolate to find temperatures at the times when

experimental data were collected: (Ti , texpi )i = 1, Nexp
4. Set α′ = α+ δα and solve Eq. 1 again but with α′ and λ and interpolate: (T ′

i , texpi )

5. Set λ′ = λ+ δλ and solve Eq. 1 again but with α and λ′and interpolate: (T ′′
i , texpi )

6. Find xα and xλ such that Slinear given by Eq. 13 is minimized
7. Set the new values for λ and α such that

λnew = λ+ xλδλ αnew = α + xaδα

8. Repeat steps 2–7 until the result converges

For the present study, δα and δλ are taken to be 1 % of the current estimated values for
α and λ, respectively. Equation 13 (i.e., step 6) is solved with the linear least-squares
method using Gram–Schmidt ortho-normalization and Q–R factorization. With initial
guesses for α and λ within ±50 % of the actual values, the above algorithm is found
to converge by about 5 or 6 iterations. If the initial guesses are within ±5 %, only 2
iterations may be required.

4 Test Results

4.1 Computer-Generated Data for Hydrogen Gas at 0.1013 MPa

Computer-generated data provide a useful basic test since the exact solutions for the
thermal conductivity and thermal diffusivity are known. Hydrogen at atmospheric
pressure in a small sample container is a severe test for the transient-hot-wire method
since the thermal diffusivity is quite large and the heating effect soon reaches the
wall of the container. The approach adopted here is to create some data for the wire
temperature by solving Eq. 1 and then starting from different initial guesses; the
procedure outlined above in Sect. 3.2 is applied to test if the algorithm will return the
correct values for α and λ. The circles in Fig. 2 show some computer-generated test
data. Fifty data points were used, evenly spaced in time from 0.02 s to 1 s. Note that
the data are not linear and that a steady state is reached due to the finite size of the
sample vessel. This behavior is typical for a low-density gas [1,2].

The results for computer-generated data are shown in Fig. 2 and Table 1. Note that
the same grid spacing was used for generating the data and for analysis in this example
(Nr × Nz = 200 × 25). Therefore, in principle, it should be possible to return to the
original thermal conductivity and thermal diffusivity, to the order of the computational
rounding error. It is clear from Table 1 that the algorithm works very well, even from a
rather poor initial guess. In fact, for the case considered in Fig. 2, the final converged
value for the present method was found to be insensitive to the initial guess and also
to the sizes of δα and δλ used in steps 4 and 5 of the algorithm. The main effect of the
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Fig. 2 Testing the present
algorithm using
computer-generated data for
hydrogen gas at 0.1013 MPa,
25 ◦C. The temperature rise is
for the volume-averaged wire
temperature
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λ = 0.185 W⋅m-1⋅K-1

α = 1.57×10-4 m2⋅s-1

q = 0.295 W⋅m-1

D = 20 mm
Pt wire d = 10 µm
H = 20 mm

Table 1 Search algorithm convergence (λ = 0.185 W ·m−1 · K−1, α = 1.57×10−4 m2 · s−1)

Thermal conductivity Thermal diffusivity Thermal conductivity Thermal diffusivity
(W · m−1 · K−1) (10−4 m2 · s−1) error (%) error (%)

Initial guess 0.085 1.0 54 36
1st iteration 0.1316223 1.150692 29 27
2nd iteration 0.1700767 1.385250 8.1 12
3rd iteration 0.1839467 1.541626 0.57 1.8
4th iteration 0.1850046 1.569681 0.0025 0.020
5th iteration 0.1849999 1.570002 0.000025 0.00013
6th iteration 0.1850000 1.570000 0.00000026 0.00000087

initial guess is that a poor guess requires a larger number of iterations for the solution
to converge. It is worth mentioning, however, that the initial guesses should be of the
correct order of magnitude since it is possible for the linear approximation (Eq. 13) to
yield negative values for the properties if the thermal diffusivity estimate is much too
large.

4.2 Numerical Grid Convergence

Since both the test case and the search algorithm used the same numerical grid, the
convergence shown in Table 1 only demonstrates that the algorithm works effectively. It
does not give a true indication of the numerical error in the method. Provided the model
is physically correct and the solution converges properly, the main source of numerical
error is in the numerical discretization of Eq. 1. In principle, it is always possible to
reduce the numerical error to a value much smaller than the experimental error by
using progressively finer computational grids and smaller time steps. The practical
limit to numerical accuracy is actually determined by the available calculation time.
Since we must solve Eq. 1 many times, we are practically limited to the finest grid that
can be solved in a few minutes. Thus, the numerical accuracy of the present method
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Table 2 Grid convergence for computer-generated test case (λ = 0.185W · m−1 · K−1, α = 1.57 ×
10−4m2 · s−1)

Grid Time First λ λ (error) α α(error) Calc.
Nr×Nz Nt (or smallest) (W · m−1· K−1) (%) (10−4m2 · s−1) (%) time

(min)
�r/rwire �z/rwire �t (µs)

133 × 18 800 0.6 7.5 75 0.18448 0.28 1.5732 0.20 2
200 × 25 1,200 0.4 5.0 50 0.18477 0.12 1.5716 0.10 10
300 × 38 1,800 0.27 3.75 38 0.18491 0.05 1.5710 0.06 46
450 × 50 2,700 0.18 2.5 10 0.18497 0.016 1.5697 0.02 180

can improve if a faster computer is used or more computation time is available for
data processing. In any case, for high-precision work it is important to demonstrate
the grid convergence and not rely too heavily on past experience since it is very easy
for numerical errors to appear. We propose that this be done by tabulating the thermal
conductivities and thermal diffusivities determined using different grid spacing as
illustrated in Table 2.

For all cases in Table 2 the test data were generated using a 600×75 grid (Nr × Nz).
The smallest grid sizes,�r and �z, are quite important since the steepest radial tem-
perature gradients occur next to the wire and the steepest axial temperature gradients
occur at z = 0. Therefore, they are also given in the table. Starting with the smallest
values, geometric progressions are used to determine the grid spacing for the entire
domain. Initially small time steps are required (�t in Table 2) but this becomes less
important as time progresses, so it is also permissible for the time steps to increase
geometrically. This observation was verified by a numerical experiment. The number
of grid points in the r -direction needs to be more than in the z-direction due to the
steep temperature gradient next to the wire.

The calculation times given in Table 2 are wall-clock times for six iterations of
the present method on a Pentium D personal computer with a clock speed of 3 GHz.
(Note that six iterations imply that Eq. 1 is solved 18 times.) The convergence criterion
for each time step was a reduction in the residual-squared norm of seven orders of
magnitude from its value at the start of the calculation. Two seconds of data were
produced for each case to compare with 50 points evenly spaced in the period from
0.02 s to 1 s.

In Table 2, the number of grid points in each direction, Nr , Nz , and time steps, Nt ,
are increased by a factor of 1.5 with each refinement. For the present numerical scheme,
this results in a reduction of the numerical error of about one-half but an increase in
the required time for calculation by a factor of about five. Based on Table 1, we can
see that the number of iterations, and hence the calculation time, can be reduced by
using better initial guesses. This indicates that in practice it may be best to use a coarse
grid first to obtain a reasonably accurate estimate before applying the fine grid. In any
case, Table 2 indicates that a numerical error of the order of 0.05 % may be achieved
in less than 1 h using the present technique on a fairly standard personal computer.

It is also worth noting that using the present numerical scheme, the difference
between consecutive grid refinements in Table 2 is of the same order of magnitude or
slightly larger than the absolute error. This is important since for experimental data
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Fig. 3 Application of the
present technique to
computer-generated data with
random noise
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Converged result:
λ = 0.18494 W⋅m-1⋅K-1

α = 1.5882×10-4 m2⋅s-1

Table 3 Grid convergence for test case with noise (λ = 0.185 W · m−1 · K−1, α = 1.57 × 10−4m2 · s−1)

Grid Time First λ λ (error) α α (error)
Nr × Nz Nt (or smallest) (W · m−1· K−1) (%) (10−4 m2· s−1) (%)

�r/rwire �z/rwire �t (µs)

133 × 18 800 0.6 7.5 75 0.18449 0.28 1.5894 1.2
200 × 25 1,200 0.4 5.0 50 0.18480 0.11 1.5889 1.2
300 × 38 1,800 0.27 3.3 33 0.18494 0.03 1.5882 1.0

we do not know the exact values of the thermal conductivity and thermal diffusivity.
Thus, the difference between consecutive grid refinements (using 1.5Nr , 1.5Nz, 1.5Nt

at each refinement) gives a reasonable indication of the numerical error of the present
numerical scheme.

4.3 Effect of Noise in Data

To simulate the effect of noise in the data, the above calculations were repeated with a
random fluctuation added to each computer-generated data point. Time measurements
were assumed to have a 2σ uncertainty of ±15 ms and temperature readings an uncer-
tainty of ±5 mK. The random fluctuations were taken to be normally distributed and
were produced using the Box–Muller method.

Figure 3 shows the test data and final converged result using the present method
applied to the data containing noise. The time component of the random fluctuation
has a large influence on the data at small values of t , while at large values of t , the
uncertainty in the temperature is more important. Table 3 shows the grid convergence.
Comparing Tables 2 and 3, it is clear that the noise had little effect on the value of
thermal conductivity. Thermal diffusivity on the other hand converged to a value about
1 % higher than the true value of 1.57 × 10−4 m2 · s−1.
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Fig. 4 Contours of the
nonlinear objective function
(Eq. 9) for data including
random noise
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A possible concern with application of the present technique to data containing noise
is that the noise may introduce local minima in the objective function. To investigate
this possibility, the objective function for the 133 × 18 grid in Table 3 is plotted in
Fig. 4. It is evident in this figure that only one minimum appeared and it was correctly
found by the present algorithm. For this example, the main effect of the noise was
to shift the location of the minimum rather than introducing new minima. Another
interesting observation from Fig. 4 is that the objective function has a sharp minimum
with respect to λ but a shallow minimum with respect to α. Also, the error in the
estimate for λ is due mostly to the grid discretization, while on the other hand the
random noise is largely responsible for the error in the thermal-diffusivity estimate
for the case plotted in Fig. 4. Thus, we may conclude that thermal diffusivity is more
susceptible to the influence of noise than thermal conductivity.

4.4 Importance of Boundary Conditions for Low-Density Gas Analysis

Since the boundary condition at r = R is important for high-diffusivity fluids, we
should expect that the boundary conditions at the bottom and top of the cylinder will
also be important. Figure 5 shows steady-state distributions of the temperature rise
for three different boundary conditions on the lower part of the cylinder. Figure 5a is
the same boundary condition as specified by Eq. 4. In Fig. 5b an isothermal boundary
is used for r < 1 mm and an insulated boundary for r > 1 mm at the bottom of the
cylinder. In Fig. 5c calculations were performed where the platinum wire is supported
by a 2 mm diameter copper wire that extends 3 mm from the lower wall. In all three
cases the length of the platinum wire is the same. Clearly the temperature distributions
within the sample are different among the three cases. Generally, the gas temperatures
are the highest for the case shown by Fig. 5b and lowest for Fig. 5a.

For the present study, the important consideration is the effect that the different
boundary conditions have on the volume-averaged wire temperature. This is shown
in Fig. 6. During the first 0.02 s it is difficult to distinguish between the three cases.
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Fig. 5 Steady-state temperature distributions for different boundary conditions in low-density H2 gas (a)
Isothermal boundary at z = 0, (b) Insulated lower boundary for r > 1 mm, and (c) 2 mm diameter copper
supporting wire

Fig. 6 Calculated
volume-averaged wire
temperature rise for the cases
shown in Fig. 5
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This should be expected since it will take time for the heating effect of the wire
to reach beyond a radial distance of 1 mm where the three cases become different.
However, by about 0.1 s the differences between the curves in Fig. 6 are quite clear
and reach a maximum of about 0.06 K corresponding to the steady-state condition. If
data generated using the boundary conditions shown in Fig. 5c are analyzed using the
present method with the boundary condition given by Eq. 4, the thermal conductivity is
estimated to be about 1.3 % lower than the true value. Moreover, the thermal diffusivity
is estimated to be about 16 % lower than the true value. Therefore, it is essential
that boundary conditions at the top and bottom of the sample holders are realistic
representations of the actual instrument for the present technique to be applicable for
low-density gas analysis.
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Table 4 Instrument dimensions (Sun et al. [16])

Material Wire diameter Short-wire length Long-wire length Cylinder diameter

Platinum 13.06 µm 28.26 mm 85 mm 10.0 mm

Fig. 7 Present algorithm
applied to experimental data for
low-density argon gas [14]
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exper. q = 0.12747 W⋅m-1

exper. q = 0.05658 W⋅m-1

present curve-fitting result

Argon gas
296 K
0.333 MPa
d = 13.06 µm
D = 10.0 mm

λ = 0.01786 W⋅m-1⋅K-1

a = 5.77×10-6 m2⋅s-1

λ = 0.01780 W⋅m-1⋅K-1

a = 5.73×10-6 m2⋅s-1

4.5 Experimental Data for Argon Gas at 0.333 MPa

A representative case published by Sun et al. [16] was used to verify the applicability
of the present method to actual experimental data. In their work, they reported data
that were already corrected for end effects. Such data can still be used in the present
procedure simply by comparison with the calculated temperatures at the center of the
wire. In fact, the one-dimensional solution should be sufficient in this case (which
incidentally requires negligible computer time). However, as an additional check, we
retained the full 2D solution and made use of the wire center temperature. The geometry
for the case of Sun et al. [16] is given in Table 4. Calculations were performed for
both the long- and short-wire lengths and were found to be in good agreement with the
one-dimensional case. This indicates that the correction method for end effects used
by Sun et al. was effective, and it shows that the one-dimensional numerical solution
is suitable for analysis of data from conventional transient hot-wire instruments.

Figure 7 compares the present calculation with the experimental measurements for
two different powers supplied to the wire. As can be seen, departures from linearity for
t < 0.1 s and for t > 2 s are well captured by the present model. Table 5 indicates that
the grid convergence for the thermal conductivity is of the order of 0.06 % while for
thermal diffusivity it is of the order of 0.2 %. Sun et al. [16] did not give the thermal
diffusivity separately for the two cases given in Table 5, but rather they reported a
corrected value based on both results.

Table 6 compares the present results with some reference data for argon from the
literature. The thermal conductivity agrees with literature values to within about 0.3 %
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Table 5 Grid convergence for analysis of data from Sun et al. [16]

Temperature Power Grid Time First λ α

(K) (W · m−1) Nr × Nz Nt (or smallest) (W · m−1· K−1) (10−6 m2· s−1)

�r/rwire �z/rwire �t (µs)

299.161 0.05658 200 × 25 1200 0.4 5.0 50 0.01779 5.744
300 × 38 1,800 0.27 3.75 38 0.01780 5.733
Values determined by Sun et al. [16]: 0.01777 (6.262)a

302.787 0.12747 200 × 25 1200 0.4 5.0 5. 0.01785 5.781
300 × 38 1,800 0.27 3.75 38 0.01786 5.770
Values determined by Sun et al. [16] 0.01788 (6.262)a

a Reported value for thermal diffusivity [16] is based on both readings corrected to T = 296.63 K

Table 6 Comparison of present estimates with argon reference data

T (K) P (MPa) λ (W · m−1 · K−1) α (10−6 m2 · s−1)

Present Ref. [18] Ref. [17] Present Ref. [18,19]a Ref. [17]

299.161 0.333 0.01780 0.01787 0.01775 5.733 6.361 6.316
302.787 0.333 0.01786 0.01805 0.01792 5.770 6.504 6.458
aλ from [18], ρ and cp from [19] to determine the thermal diffusivity

for Ref. [17] and 1 % for Ref. [18]. The thermal diffusivity values are about 8 %
lower than those reported by Sun et al. listed in Table 5 and about 10 % lower than
the reference data shown in Table 6. The poorer agreement for thermal diffusivity
can be explained in part by the strong sensitivity of the hot-wire method for deter-
mining thermal diffusivity to small changes in the absolute values of the measured
temperatures.

4.6 Natural Convection Issues

The present method is powerful in that the measured temperature data do not need to
fall on a straight line when plotted against the logarithm of time. However, this may
raise concerns with respect to natural convection since one method of eliminating
natural convection is to discard the data that depart from a straight line by a certain
percentage [8]. Thus, we need to confirm that the present method will not mistake
natural convection effects for outer boundary effects (which may appear similar on
a plot of temperature rise versus the logarithm of time). To do this, we make use of
some data published for liquid toluene [8] where the effects of natural convection can
be observed clearly.

The circular symbols in Fig. 8 show measurements for toluene by Nagasaka and
Nagashima [8] using a 15 µm platinum hot wire. End effects are experimentally remo-
ved from the data by attaching potential taps part way along the wire. As in Sect. 4.3
it is assumed that the temperature given from experiment is equivalent to the wire
center temperature for the present method. As can be seen from the circular symbols
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Fig. 8 Application of present
method to experimental data for
toluene [8]. Data influenced by
natural convection must be
discarded based on criterion
such as given by Zhang et al.
[11]
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in Fig. 8, natural convection causes a severe departure from the straight line such that
the wire temperature even begins to decrease after about 10 s. Zhang et al. [11] give a
useful criterion for avoiding natural convection which is marked by the vertical dashed
line. For this particular case, using Zhang’s criterion, data beyond 4.67 s, should be
discarded as possibly being influenced by natural convection. The solid line shows
the result of applying the present method only to the data for times less than 4.67 s,
while the dashed–dotted line represents application of the present method to all data
including that influenced by natural convection. Clearly the dashed–dotted line does
not agree with the experimental data. This is in contrast to Fig. 7 where the present
calculation agrees well with the full trend of the data. Thus, we may suspect that if
the converged result does not agree with the measured data then the data have been
influenced by another phenomenon (such as natural convection in this case) that has
not been included in the model (Eq. 1).

It is worth mentioning that natural convection effects decrease dramatically as the
density of the gas is reduced [3,6]. In fact, this principle is usually used to justify
neglecting natural convection effects in the steady hot-wire method for measuring
thermal conductivity. Figure 8 shows a case where the issue is clear-cut. A more subtle
distinction may occur for hydrogen or argon gas in a small thermal conductivity cell
at moderate pressures. In such cases it may be necessary to rely on Rayleigh number-
based criteria [11] to discard spurious data. Alternatively, analysis could be repeated
using part of the data set, excluding data for larger values of t , which should be affected
the most by natural convection. Low sensitivity to the time range of data selected for
analysis could be an additional indication for the absence of natural convection effects.

4.7 Comparison with Classical Analytical Analysis

For low-density gas the classical analytical analysis requires a number of corrections
(see Refs. [1,3,5]). Therefore, rather than entering into a discussion of the relative
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Table 7 Comparison of present estimates for toluene with conventional method estimates

T (◦C) λ (W · m−1 · K−1) α (10−8 m2 · s−1)

Present Analytical Ref. [20] Present Analytical Ref. [20,21]a

79.7 0.1104 0.1104 0.1150 5.03 4.98 7.58
aλ from [20], ρ and cp from [21] to determine the thermal diffusivity.

importance of the various analytical corrections, we will just consider the simple case
of liquid toluene, which can behave almost ideally in a well-designed instrument [8].
This test also demonstrates the applicability of the present method to standard tran-
sient hot-wire data. Table 7 gives analysis of the toluene data [8] shown in Fig. 8 for
t < 4.67 s. For thermal conductivity, the present method is in agreement with the clas-
sical analytical analysis (without corrections) to better than 0.1 %. Thermal diffusivity
on the other hand differs by about 1 % for the two methods.

Unfortunately, neither the present nor the analytical method shows good agreement
with the reference data for the thermal diffusivity of toluene. This may be explained
partly by the fact that thermal diffusivity is very sensitive to the absolute value of the
temperature rise as mentioned earlier, and the data shown in Fig. 8 were scanned from
a printed figure. It is conceivable that additional uncertainty due to the printing may
have influenced the quality of the data. Nevertheless, it is encouraging that the present
method is in good agreement with the classical analytical analysis for the same data
set.

4.8 Effect of Variable Fluid Properties

In the algorithm outlined in Sect. 3.2 we have assumed that α and λ are constant but in
reality they will be a function of the fluid temperature. In the traditional transient hot-
wire method, by treating thermal conductivity and volumetric heat capacity as linear
functions of temperature, Healy et al. [1] showed that variation in fluid properties could
be treated by re-specifying the temperature, Tr, at which the properties are measured;

Tr = 1

2
{�T (t1)+�T (t2)} + T0 (14)

where T0 is the bath temperature, �T (t1) is the temperature rise of the wire at time
t1 and the data used to specify the slope were collected in the time range from t1 to
t2. For the steady-state hot-wire method the average of the wire temperature and the
outer wall temperature is sometimes used [3]. Using similar notation to Eq. 14, the
corrected bath temperature for the steady-state hot-wire method is

TrSS = 1

2
�T (t2)+ T0 (15)

where t2 is a value of time large enough for steady state to be reached. To test if
either of the above “bath temperature corrections” is useful in the present method,
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Table 8 Effect of variable gas properties in the present model

Condition λ (W · m−1 · K−1) Error (%) α (10−4 m2 · s−1) Error (%)

Variable property simulation 0.18544 − 1.5767 −
Constant properties at T0 0.185 0.24 1.57 0.42
Constant properties at Tr 0.18577 0.18 1.5844 0.49
Constant properties at Trss 0.18541 0.016 1.5777 0.06

Fig. 9 Effect of variable fluid
properties (hydrogen at 25 ◦C,
0.1013 MPa)
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λ0 = 0.185 W⋅m-1⋅K-1
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q = 0.295 W⋅m-1

D = 20 mm
Pt wire d = 10 µm
H = 20 mm
χ0 = 4.8×10-4 W⋅m-1⋅K-2

φ0 = -3.63 J⋅m-3⋅K-2

we simulated the temperature rise of the wire using hydrogen gas properties that vary
linearly with temperature according to

λ = λ0 + χ0 (T − T0) (16a)

ρc = ρ0c0 + φ0 (T − T0) (16b)

For hydrogen gas at atmospheric pressure we used χ0 = 4.8 × 10−4W · m−1 · K−2

and φ0 = −3.63 J · m−3 · K−2 (from Ref. [17]). Taking the simulated temperatures,
we recalculated the thermal conductivity and thermal diffusivity using the present
technique. The results are shown in Table 8 with a comparison of the expected results
for Tr and TrSS using Eqs. 14 and 15, respectively. For simplicity we used the volume-
averaged wire temperature to evaluate �T (t1) and�T (t2) in Eqs. 14 and 15. Clearly
from Table 8, for this particular example, the simple average of final wire temperature
and the wall temperature (Eq. 15) gives the best correction to the bath temperature.
This result is confirmed in Fig. 9 which shows constant property simulations at three
temperatures Tr, TrSS, and T0 and the variable property simulation. In Fig. 9, the result
for properties evaluated at TrSS (dashed–dotted line) is in the best agreement with the
variable property simulation (symbols).

The reason for the suitability of Eq. 15 to the low-pressure hydrogen data is pro-
bably because many of the data in Fig. 9 are close to the steady-state condition. We
also performed a similar numerical experiment for hydrogen gas at 100 MPa. In the
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high-pressure case the data form a straight line when plotted against the logarithm of
time, and consistent with the analysis of Healy et al. [1], Eq. 14 provides a slightly
more accurate bath temperature correction than Eq. 15. Therefore, for low-pressure
gas data using the present technique we tentatively recommend Eq. 15.

5 Range of Applicability for Present Technique

The main purpose of the method proposed in this article is to extend the applicability
of the transient short-hot-wire method to low-density gases. In the above sections we
have demonstrated that the present approach is suitable for low-density gas and also
for liquids provided data influenced by natural convection can be excluded from the
analysis. Numerical limitations in the algorithm are important, but we have found
that the present technique will converge even for data where the underlying model is
not appropriate (e.g., the dashed–dotted line in Fig. 8). Therefore, it is important to
note that the method is only applicable in so far as the model outlined by Eqs. 1–8
is a valid representation of the actual instrument and sample fluid. The model will
need modification for gas pressures significantly lower than atmospheric where a
temperature discontinuity may occur at the wire surface. Data strongly influenced
by natural convection, particularly near the critical point, may be difficult to analyze
with the present technique. Problems where fluid properties vary sharply may need
special treatment. Also, problems where the effect of thermal radiation by the fluid
is significant will require a radiation model. The geometry and boundary conditions
of the actual cell must also be consistent with Fig. 1 as demonstrated in Sect. 4.4.
The power of the present technique lies in the fact that the underlying model can be
modified to account for all kinds of situations. Numerical issues will ultimately restrict
the range of applicability of the method if the chosen model is too complicated to be
solved accurately within a short time.

6 Conclusions

1. The proposed search algorithm to determine thermal conductivity and thermal
diffusivity works well for low-density gas data.

2. The magnitude of the numerical error depends on the finest computational grid for
which the transient thermal field can be calculated within a few minutes.

3. With the present scheme, the numerical error due to discretization can be reduced
to less than 0.1 % of the determined thermal conductivity for a total calculation
time of less than 1 h on a personal computer.

4. The present method when combined with a real instrument is more accurate for
determining thermal conductivity than for thermal diffusivity.

5. The estimate for thermal diffusivity is more sensitive to noise in the data than
thermal conductivity.

6. When applying the present method to data that may have been influenced by natural
convection, the departure from a straight line should not be used as the criterion
for detecting the onset of natural convection. Rather, an empirical criterion such as
that given by Zhang et al. [11] should be applied for discarding data points.
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7. For liquids and high-density gases, the present method is expected to agree with
the classical analytical analysis to better than 0.1 % for determination of thermal
conductivity.

8. The proposed search algorithm (Sect. 3.2) can be used for both the short-hot-
wire method and for analysis of data from the conventional transient hot-wire
instruments. Conventional data only require that the 1-D unsteady heat conduction
equation be solved.

Acknowledgments This research has been conducted as a part of the “Fundamental Research Project
on Advanced Hydrogen Science” funded by the New Energy and Industrial Technology Development
Organization (NEDO).

Appendix

Simplified Minimum Residuals Algorithm for Solving Discretized
Equations for the Short-Hot-Wire Problem

The practical success of the present short-hot-wire method rests on the ability to
solve the resulting equations quickly and accurately. Since subtle variations in the
formulation for the matrix solver can have a large influence on the calculation time,
it is worthwhile giving attention to the details of a method that the first author of this
article found successful for this problem.

The algebraic equation for any temperature Ti, j at the grid point (i, j) can be written
in the form of

ai, j
p Ti, j = ai, j

w Ti−1, j + ai, j
e Ti+1, j + ai, j

s Ti, j−1 + ai, j
n Ti, j+1 + bi, j (A1)

The subscripts p, w, e, s, and n stand for main point, west, east, south, and north,
respectively (following the naming convention in Ref. [12]), where north is the positive
z-direction and east is the positive radial direction. The set of equations is solved
iteratively for each time step. If T current

i, j is the current estimate for Ti, j , then the
residual, ri j is defined by

ri, j ≡ ai, j
w T current

i−1, j + ai, j
e T current

i+1, j + ai, j
s T current

i, j−1 + ai, j
n T current

i, j+1 + bi, j − ai, j
p T current

i, j

(A2)

If we substitute Ti, j = T current
i, j + T ′

i, j in Eq. A1 where T ′
i, j is the required correction

to satisfy Eq. A1 then we have

ri, j = ai, j
p T ′

i, j − ai, j
w T ′

i−1, j − ai, j
e T ′

i+1, j − ai, j
s T ′

i, j−1 − ai, j
n T ′

i, j+1 (A3)

Now assume we have n different estimates at which correction might be required and
assume that T ′

i, j can be approximated by a linear combination of these estimates (or
so-called search directions),

{
T ′} ≈ x1

{
T ′

search1

} + x2
{
T ′

search2

} + · · · + xn
{
T ′

searchn

}
(A4)
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Here the curly brackets {} are used to indicate a vector containing all components, T ′
i, j .

The principle of minimum residual methods is to substitute Eq. A4 into Eq. A3 and
then solve for x1 to xn such that the sum of the squares of the residuals ri, j is minimized.
The search directions can be anything at all; however, if one of them happens to be
approximately a multiple of the unknown {T ′}, then convergence is very fast. For this
reason it may be helpful to think of the search directions as ‘estimates’ for {T ′} as
mentioned above. Ideally the search directions should be approximately orthogonal
to each other. Often as a result of the way they are generated, the search directions
belong to the so-called Krylov subspace [14]. In practice, for efficiency, generation
of search directions, the above substitution, and solution of the least-squares problem
are intertwined in the particular minimum residual algorithm.

The generalized conjugate residual (GCR) method [13] uses multiple search
directions which are saved and automatically generated as the algorithm progresses.
However, any stationary iterative method (e.g., Gauss–Seidel iterations, line-by-line
tri-diagonal matrix algorithm (TDMA)) can be used for generating new search direc-
tions. This approach is called preconditioned GCR in Wesseling’s text [14] and was
used for the present work. After testing a few alternatives, it was found that genera-
ting just one search direction using the TDMA method was effective for the present
problem. For only one search direction, the GCR algorithm can be simplified greatly.
Thus, rather than giving the full algorithm we will explain the simplified version.

1. Generate search direction using TDMA

This can be done as follows:

{
T search} = {

T current}

DO (about 10 times)

DO (i = 1, Ni )( j = 1, N j )

ci, j = bi, j + ai, j
s T search

i, j−1 + ai, j
n T search

i, j+1

END DO
DO ( j = 1, N j )

Solve for T search
i, j using TDMA: ai, j

p T search
i, j = ai, j

w T search
i−1, j + ai, j

e T search
i+1, j + ci, j

END DO
END DO

Note that the first inner loop to evaluate ci, j is performed over all i , j before applying
the TDMA. Combining the two inner loops can lead to poorer convergence.

Also note that no under-relaxation is used in the TDMA. Usually the line-by-
line TDMA approach is done in alternate directions [12]. However, for the present
problem only one direction as indicated above was enough. This is effective because
the physical problem is roughly one-dimensional in the radial direction over much of
the wire length.
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2 Solve the minimum residual problem to update solution

First set

{
T ′

search

} = {
T search} − {

T current}

Find x such that S is minimized:

S =
∑
i, j

(
ri, j + xdi, j

)2 (A5)

where

di, j = ai, j
w T ′

search(i − 1, j)+ ai, j
e T ′

search(i + 1, j)+ ai, j
s

×T ′
search(i, j − 1)+ ai, j

n T ′
search(i, j + 1)− ai, j

p T ′
search(i, j)

If Eq. A5 is differentiated with respect to x , it is easy to show that

x = −∑ (
ri, j di, j

)
∑ (

di, j di, j
)

The current solution is then updated using

{
T current} = {

T current} + x
{
T ′

search

}
(A6)

In concluding this section it is worth noting that it is extremely important that the solu-
tion to the discretized equations converges properly every time step. In the experience
of the first author, most difficulties tend to occur during the first few time steps. When
convergence difficulties occur, reducing the size of the time steps usually solves the
problem. A failure to converge on just the first time step can destroy the accuracy of
the method even if excellent convergence is achieved on all other time steps.
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